Non-coding RNAs have been linked to various diseases including focal segmental glomerulosclerosis (FSGS). The revolution in sequencing technology has opened up entirely new opportunities regarding the discovery of novel transcripts. It is now widely agreed that around 80% of the human genome is transcribed in a cell-type and context-specific manner. The vast majority of all transcripts lacks any protein coding potential. Among these non-coding transcripts, the novel class of long non-coding RNAs (lncRNAs) has gained major attention due to an increasing number of studies showing its importance in organ development and disease. However, how this occurs on the molecular level and how lncRNAs impact on organ function and disease has – albeit few exceptions – remained elusive with virtually no data at all regarding FSGS. We are studying the role of lncRNAs in FSGS to exploit the great potential of this emerging field for identifying novel diagnostic and therapeutic targets.
Project related publications
Bartram, M.P., Amendola, E., Benzing, T., Schermer, B., de Vita, G. and Müller, R.-U., 2016. Mice lacking microRNAs in Pax8-expressing cells develop hypothyroidism and end-stage renal failure. BMC Mol. Biol. 17, 11. doi:10.1186/s12867-016-0064-x
Bartram, M.P., Dafinger, C., Habbig, S., Benzing, T., Schermer, B. and Müller, R.-U., 2015. Loss of Dgcr8-mediated microRNA expression in the kidney results in hydronephrosis and renal malformation. BMC Nephrol 16, 55. doi:10.1186/s12882-015-0053-1
Krebs, C.F., Kapffer, S., Paust, H.-J., Schmidt, T., Bennstein, S.B., Peters, A., Stege, G., Brix, S.R., Meyer-Schwesinger, C., Müller, R.-U., Turner, J.-E., Steinmetz, O.M., Wolf, G., Stahl, R.A.K. and Panzer, U., 2013. Micro-RNA-155 Drives TH17 Immune Response and Tissue Injury in Experimental Crescentic GN. J. Am. Soc. Nephrol. doi:10.1681/ASN.2013020130
Beyer, M., Thabet, Y., Müller, R.-U., Sadlon, T., Classen, S., Lahl, K., Basu, S., Zhou, X., Bailey-Bucktrout, S.L., Krebs, W., Schönfeld, E.A., Böttcher, J., Golovina, T., Mayer, C.T., Hofmann, A., Sommer, D., Debey-Pascher, S., Endl, E., Limmer, A., Hippen, K.L., Blazar, B.R., Balderas, R., Quast, T., Waha, A., Mayer, G., Famulok, M., Knolle, P.A., Wickenhauser, C., Kolanus, W., Schermer, B., Bluestone, J.A., Barry, S.C., Sparwasser, T., Riley, J.L. and Schultze, J.L., 2011. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology 12, 898–907. doi:10.1038/ni.2084
Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., Lin, C., Socci, N.D., Hermida, L., Fulci, V., Chiaretti, S., Foà, R., Schliwka, J., Fuchs, U., Novosel, A., Müller, R.-U., Schermer, B., Bissels, U., Inman, J., Phan, Q., Chien, M., Weir, D.B., Choksi, R., De Vita, G., Frezzetti, D., Trompeter, H.-I., Hornung, V., Teng, G., Hartmann, G., Palkovits, M., Di Lauro, R., Wernet, P., Macino, G., Rogler, C.E., Nagle, J.W., Ju, J., Papavasiliou, F.N., Benzing, T., Lichter, P., Tam, W., Brownstein, M.J., Bosio, A., Borkhardt, A., Russo, J.J., Sander, C., Zavolan, M. and Tuschl, T., 2007. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414. doi:10.1016/j.cell.2007.04.040
Rajman, M., Metge, F., Fiore, R., Khudayberdiev, S., Aksoy-Aksel, A., Bicker, S., Ruedell Reschke, C., Raoof, R., Brennan, G.P., Delanty, N., Farrell, M.A., O’Brien, D.F., Bauer, S., Norwood, B., Veno, M.T., Krüger, M., Braun, T., Kjems, J., Rosenow, F., Henshall, D.C., Dieterich, C. and Schratt, G., 2017. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J. 36, 1770–1787. doi:10.15252/embj.201695748
Blin, K., Dieterich, C., Wurmus, R., Rajewsky, N., Landthaler, M. and Akalin, A., 2015. DoRiNA 2.0--upgrading the doRiNA database of RNA interactions in post-transcriptional regulation. Nucleic Acids Res. 43, D160-167. doi:10.1093/nar/gku1180
Cheng, J., Metge, F. and Dieterich, C., 2015. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btv656
Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H.T., Orejuela, M.R., Piechotta, M., Levanon, E.Y., Landthaler, M., Dieterich, C. andRajewsky, N., 2015. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10, 170–177. doi:10.1016/j.celrep.2014.12.019
Valluy, J., Bicker, S., Aksoy-Aksel, A., Lackinger, M., Sumer, S., Fiore, R., Wüst, T., Seffer, D., Metge, F., Dieterich, C., Wöhr, M., Schwarting, R. and Schratt, G., 2015. A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat. Neurosci. 18, 666–673. doi:10.1038/nn.3996